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The blacklegged tick, Ixodes scapularis, is known to carry various tick-borne zoonotic 
pathogens with the potential to cause debilitating human and animal diseases. Juvenile 
I. scapularis parasitize songbirds and, perhaps, these avifauna are competent hosts of 
common microbial pathogens. We extracted brachial venous blood from 18 ground-
foraging passerine birds that were parasitized by I. scapularis larvae and nymphs. Using 
molecular identifi cation, namely PCR, DNA sequencing, and Basic Local Alignment 
Search Tool (BLAST), we targeted Anaplasma phagocytophilum, Babesia spp. and 
Borrelia burgdorferi sensu lato. Overall, 15 (83%) of 18 passerine birds were positive 
for 3 microbial zoonotic pathogens that comprised of A. phagocytophilum (n = 8), 
Babesia odocoilei (n = 6), Babesia spp. 20-5A74 (n = 1), and B. burgdorferi sensu lato 
(n = 9). The pathogen load consisted of 8 singles, 5 doubles, and 2 triples. One novel 
Babesia sp. (Babesia spp. 20-5A74) was found, and the remaining Babesia infections 
were B. odocoilei. Our fi ndings reveal that ground-foraging, passerine birds are avian 
hosts of zoonotic pathogens. We provide the fi rst-ever documentation that songbirds 
are hosts of B. odocoilei. Based on our data, B. odocoilei outnumbered other Babesia 
spp., and elucidated the authentic fact that B. odocoilei is the predominant Babesia sp. 
in North America. As avian hosts, passerine birds play a signifi cant role in the enzootic 
transmission cycle of B. burgdorferi sensu lato, A. phagocytophilum, and Babesia species.

ABSTRACT

Introduction
Principal vectors of zoonotic pathogens in North America are the 

blacklegged tick, Ixodes scapularis (Acari: Ixodidae), and the western 
blacklegged tick, Ixodes pacifi cus [1]. Both larvae and nymphs of these ixodid 
ticks parasitize songbirds (Order: Passeriformes). Epidemiologically, I. 
scapularis carries and transmits at least six tick-borne, zoonotic pathogens 
that include several genospecies within the Borrelia burgdorferi sensu lato 
(Bbsl) complex [2,3], Borrelia miyamotoi [4,5], Babesia spp. (Bspp) [6-
8], Anaplasma phagocytophilum (Aph) [9,10], Ehrlichia muris eauclairensis 
[11], and the virus of Powassan Virus Disease [12-14]. Ecologically, I. 
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scapularis parasitizes at least 82 bird species [15] 
and 55 mammalian hosts, including humans [7,16-
21]. Polymicrobial infections have been reported in 
patients [22], and multiple pathogens (i.e., Bbsl, B. 
miyamotoi, A. phagocytophilum, B. microti) have been 
detected in a single I. scapularis [23].

The Lyme disease bacterium was fi rst isolated 
from the blood of Common Yellowthroat (Geothlypis 
trichas), American Robin (Turdus migratorius), and 
Gray Catbird (Dumetella carolinensis) collected in 
Connecticut [16]. As well, Bbsl was cultured from 
a Song Sparrow (Melospiza melodia) collected in 
Wisconsin [24] and, likewise, in Connecticut [16-18]. 
In Canada, Bbsl-positive I. scapularis larvae have been 
collected from Song Sparrows [25,26]. Researchers 
put xenodiagnostic larvae on American Robins, and 
determined that this avian host is a competent host 
of Bbsl [27]. Anaplasma phagocytophilum has been 
detected in the blood of birds collected in California 
[28]. Specifi cally, blood samples from a Golden-
crowned Sparrow (Zonotrichia atricapilla) and 
European Starling (Sturnus vulgaris) were positive for 
A. phagocytophilum.

Worldwide, several diff erent Babesia spp. 
(Apicomplexa: Piroplasmida: Babesiidae) cause 
human babesiosis, and they include B. crassa-like [29], 
B. divergens [30], Babesia divergens-like MO-1 [31], B. 
duncani [32], B. microti [33], B. motasi [34], B. odocoilei 
[7], Babesia spp. XXB/HangZhou [35], Babesia sp. 
TW1 [36], Babesia spp. CA1, CA3, and CA4 [37], and B. 
venatorum [38]. Also, at least 111 valid Babesia species 
are present in environmental habitats around the 
globe [39]. Using molecular-based characterization, 
molecular biologists and veterinary researchers 
recently discovered Babesia odocoilei (Bod) in red 
deer, Cervus elaphus, in the United Kingdom [40].

Migratory songbirds widely disperse I. scapularis 
larvae and nymphs infected with tick-borne, zoonotic 
pathogens, including B. odocoilei. Combining datasets, 
B. odocoilei is common in North America. In the USA, 
tick researchers have reported B. odocoilei in Indiana 
[41-43], Michigan [44] Maine [42,43], Massachusetts 
[41-43], New York [45], Oklahoma [46,47], 
Pennsylvania [48,49] Texas [50,51], Virginia [52], 
and Wisconsin [42,43]. As well, B. odocoilei has been 
detected in I. pacifi cus in California [53]. In Canada, 
B. odocoilei has been detected in Saskatchewan [54], 
Ontario [7,15,55-59], and Quebec [55,57,58]. And 
yet, acarologists and ecologists have not reported B. 
microti in these three provinces [7,15,21,55-59]. 

Babesia odocoilei, which is a sequestering Babesia 
sp., can be recalcitrant to treat in human patients [7]. 

In contrast, B. microti is a non-sequestering species, 
and is relatively easy to treat. Biogeographically, 
there is paucity of B. microti continentwide [55].

The purpose of this tick-host-pathogen study 
was to take blood samples from ground-foraging 
songbirds that were parasitized by blacklegged ticks, 
I. scapularis, and determine whether passerine birds 
are hosts A. phagocytophilum, Babesia spp., and B. 
burgdorferi sensu lato.

Materials and Methods
Bird blood collection

Songbirds were captured using standard mist 
nets in two diff erent locations: an arboreal area near 
Montée Biggar, Quebec, Canada; 45.09 N, 74.22 W 
and, also, McGill Bird Observatory, Ste-Anne-de-
Bellevue, Quebec; 45.43 N, 73.94 W.

Blood (~50 μL) was collected in non-heparinized 
microhematocrit capillary tubes (Fisherbrand, 
Saint-Laurent, Quebec, Canada) from the brachial 
vein of each bird, by trained individuals, between 
16 June 2021 to 25 August 2021. The blood was then 
transferred to 1.5 mL cryogenic tubes (Thermo 
Fisher Scientifi c, Mississauga, Canada; Nalgene, 
Singapore, Southeast Asia) fi lled with 0.5 mL Queen’s 
lysis buff er solution [60]. Samples were stored inside 
a fridge for up to 6 months at 4 oC until they were 
shipped to the lab for subsequent analysis. Banding 
and sampling of songbirds were granted under animal 
use protocol 2007-5446 for McGill University, and 
federal banding permits were issued by the Canadian 
Wildlife Service.

DNA isolation and pathogen detection

Genomic DNA was extracted from songbird blood 
using the PureLink Genomic DNA Mini Kit (Invitrogen, 
Waltham, MA, USA) according to manufacture’s 
instructions. Detection of B. burgdorferi s.l. and A. 
phagocytophilum was performed using 20 μL real-
time PCR reaction of Taqman Fast Advanced Master 
Mix (Applied Biosystems, Waltham, MA. USA) and 
previously established primers targeting the 16S 
rDNA and msp2 genes, respectively [61,62]. A cycle 
threshold ≤ 40 with a characteristic curve was 
considered positive, and all positives were run in 
duplicate. Detection of Babesia spp. was achieved 
using primers targeting the 18S gene in conventional 
PCR followed by sequencing as previously described 
[15,58]. Molecular biology grade water and 
synthetic gBlock gene fragments (Integrated DNA 
Technologies, Coralville, IA, USA) of B. burgdorferi 



1453Scott JD, et al. (2022) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres1619

(MH781147), A. phagocytophilum (AY151054.1) and 
B. microti (MT974173.1) were included in all PCR 
reactions as controls.

Results
Tick collection

In total, brachial venous bloods from 18 ground-
forging passerine birds (6 Song Sparrows, Melospiza 
melodia Wilson; 4 Common Yellowthroats, Geothlypis 
trichas L.; 4 Veeries, Catharus fuscescens Stephens; 1 
Ovenbird, Seiurus aurocapillus L.; 1 Brown-headed 
Cowbird, Molothrus ater Boddaert; 1 Swainson’s 
Thrush, Catharus ustulatus Nuttall; and 1 American 
Robin, Turdus migratorius L.) were selected for 
testing and analysis. Qualifi ed bird banders identifi ed 
passerine birds to bird species. From these tick-
infested passerines, 30 I. scapularis (9 larvae, 21 
nymphs) were also collected.

Molecular detection of pathogens

Overall, 24 infections were detected, namely 9 
Bbsl (38%), 8 Aph (33%), 6 B. odocoilei (25%), and one 
Babesia spp. 20-5A74 (4%), in 15 (83%) of 18 songbirds. 
These infections comprised of 8 single infections, 5 
co-infections (n = 10), and 2 polymicrobial infections 
(n = 6) (Table 1).

Nine birds (50%) were infected with Bbsl, six 
birds (33%) with B. odocoilei, and eight birds (44%) 
with Aph. A single bird (Common Yellowthroat) was 
infected with a Babesia spp. 20-5A74 strain (Table 1).

Blood from four diff erent Song Sparrows were 
positive for Bbsl which also suggests that Song 
Sparrows are avian hosts of Bbsl. One (SOSP*0976) 
of these four Song Sparrows had a triple infection 
(i.e., Bbsl, Aph, Bod) (Figure 1A). Likewise, a 
juvenile Brown-headed Cowbird (BHCO*1471) 
had three endogenous pathogens (i.e., Bbsl, Aph, 
Bod) simultaneously as a polymicrobial infection 
(Figure 1B). Three individual songbirds (1 Common 

Yellowthroat, 1 Veery, and 1 Song Sparrow) were not 
infected with target pathogens.

Since the seven Babesia sequences for B. odocoilei 
were all almost 99.7% or more identical to sequences 
in GenBank, we did not deposit them to this publically 
available databank because they would not contribute 
to known diversity. 

Discussion
The tick I. scapularis carries various pathogens with 

the potential of producing serious human and animal 
diseases. Babesia odocoilei-infected I. scapularis ticks 
have previously been collected from songbirds, but 
we unveil this babesial parasite for the fi rst time in 
bird blood. After numerous B. odocoilei collections in 
Ontario and Quebec, B. microti has not been found in 
blacklegged ticks or songbirds. Not only do ground-
frequenting songbirds transport ticks, they may 
also be hosts for tick-borne, zoonotic pathogens. 
Migratory songbirds widely disperse zoonotic 
pathogens across North America and, therefore, one 
does not have to frequent or live in an endemic area 
to contract human babesiosis caused by B. odocoilei. 

Tick-Host-Pathogen enzootic transmission 
cycle

Each microbial pathogen in the present study has 
its own tick-host pathways for sustaining viability. 
For polymicrobial infections, each one can have a 
diff erent source and enzootic route. Tick-borne, 
zoonotic pathogens can be sourced from ixodid ticks, 
and transmitted during bird parasitism [15,55-59]. 
Since I. scapularis ticks are typically infected, we 
sampled ground-foraging songbirds with attached 
ticks. Although we selected these parameters, there 
was no assurance of infectivity. Depending on the time 
of year, sources and pathways of pathogens can vary 
greatly. Moreover, the combination of pathogens, can 
vary in the enzootic transmission cycle.

Table 1. DNA sequence analysis of the 18S gene of Babesia spp. in blood of songbirds captured at Montée Biggar, Quebec, 2021.

Bird Species Bird Code Date Collected Babesia species BLAST Match

Common Yellowthroat COYE*2978 12-Jul B. odocoilei 99.8/99

Common Yellowthroat COYE*7109 16-Jun B. spp. 20-5A74 94/96

Common Yellowthroat COYE*7128 23-Jun B. odocoilei 98.8/100

Veery VEER*1549 12-Jul B. odocoilei 100/100

Veery VEER*3257 16-Jun B. odocoilei 99.2/100

Song Sparrow SOSP*0976 4-Jul B. odocoilei 99/100

Brown-headed Cowbird BHCO*1471 4-Jul B. odocoilei 98.9/100
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Even though I. scapularis females do not parasitize 
songbirds, they can transmit B. odocoilei to the next 
generation via transovarial transmission (gravid 
female to eggs to larvae) [1,46,63]. When larvae 
acquire B. odocoilei, they can transmit B. odocoilei to 
the next life stages via transstadial passage (larva 
to nymph and/or nymph to adult). Notably, neither 
larvae nor nymphs require a B. odocoilei-infected 
host to acquire infection. If the mobile life stages 
(i.e., larvae, nymphs, and females) of I. scapularis do 
not imbibe a replete blood meal, transmission of B. 
odocoilei is discontinued.

Alternatively, I. scapularis must acquire B. 
burgdorferi s.l. and A. phagocytophilum from infected 
hosts. Both bacterial infections typically stop when 
I. scapularis adults die. However, ground-foraging 
songbirds often feed on spent females after she lays 
her eggs, and may become infected orally. Hosts are 
paramount in sustaining these bacterial infections 
[63].

Although inter-generational studies have not 
been done with passerines, they can hold microbial 
infections as competent hosts [27]. Four (80%) of fi ve 
Song Sparrows were infected with B. burgdorferi s.l. 
which suggest this bird species is a competent host. 
As well, three (75%) of four Common Yellowthroats 
were infected with A. phagocytophilum suggesting 
they are competent hosts. Similarly, three (75%) of 
the four Common Yellowthroats were infected with 
Babesia spp. Furthermore, two (50%) of four Veeries 
were infected with B. odocoilei which, again, suggests 
that Veeries are competent hosts of this apicomplexan 
parasite.

Polymicrobial infections occur in I. scapularis and 
their hosts. In the present study, an adult Song Sparrow 
(SOSP*0976) was infected with A. phagocytophilum, B. 
odocoilei, and B. burgdorferi s.l.; however, the single I. 

scapularis nymph was negative. Likewise, a juvenile 
Brown-headed Cowbird (BHCO*1471) was infected 
simultaneously with these three tick-borne zoonotic 
pathogens; however, the engorged larvae, which 
molted via transstadial passage to nymphs, were 
negative. These enzootic fi ndings suggest vertical 
transmission (mother songbird to fi lial off spring) or 
previous infections via bird parasitism by ticks. When 
juvenile I. scapularis are negative, and the hosts’ bloods 
are positive, this enzootic situation suggests that 
these avian hosts are retaining tick-borne zoonotic 
pathogens in their bodies, and are competent hosts.

With respect to B. burgdorferi s.l., I. scapularis 
females do not facilitate transovarial transmission 
[62]. Therefore, when an I. scapularis larva parasitizes 
a songbird, the only avenue for it to become infected 
with B. burgdorferi s.l. is an infected host (Figure 2). 
Birds are known to harbor Bbsl in their bodies for 
extended periods of time [27,64,65]. Once acquired 
from infected hosts, many tick-borne pathogens 
are confi ned within the tick gut lumen, and are 
surrounded by tick-microbe interactions and discrete 
midgut barriers [66]. There are many barriers that 
pathogens encounter when passing from host to 
tick. These biological hindrances include host blood 
chemistry, tick defenses, competition from other 
pathogens/microbes within the tick, and sequence of 
infection (e.g., some pathogens may exclude others 
depending on the order of exposure) [66−69]. A tick 
can initially test positive for a microorganism but 
not survive due to tick characteristics and microbial 
interactions in the midgut lumen.

Overall, B. microti is sparse in North America. After 
numerous tick-host-pathogen studies, researchers 
have not found B. microti in I. scapularis and songbirds 
collected in Ontario and Quebec [7,8,15,21,55-59]. 
Similarly, a tick-pathogen survey of 299 questing I. 
scapularis adults in Pennsylvania found B. odocoilei 

Figure 1. Songbirds with triple infections comprised of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Babesia odocoilei. 
A. Song Sparrow, SOSP*0976, adult; B. Brown-headed Cowbird, BHCO*1471, juvenile. 
White arrows point to engorged, attached ticks. Photos: Ana Morales.
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in 15.4%, whereas B. microti accounted for only 
0.7% [49]. In Maryland, none of the 348 I. scapularis 
nymphs collected was positive for B. microti [70]. 
In a recent tick-host-pathogen study, the ratio of 
B. odocoilei to B. microti was 41 to 1 [55]. By far, B. 
odocoilei was the predominant Babesia sp. With the 
exception of one Babesia strain (i.e., Babesia spp. 21-
5A74), all Babesia spp. in the present study were B. 
odocoilei (Table 1). Moreover, since most commercial 
laboratories do not test humans for B. odocoilei, and 
the fact that B. odocoilei cross-reacts with B. duncani 
[7,8], B. odocoilei has often been misrepresented or 
discounted as B. duncani [7,8].

Survival of Babesia odocoilei in nature

Over millions of years, B. odocoilei has honed itself 
to parasitize a wide range of vertebrate hosts [38,63]. 
This sequestering piroplasmid can dwell in all four 
developmental life stages (eggs, larvae, nymphs, 
adults) of I. scapularis ticks [1,59]. Babesia odocoilei-
infected, gravid females can pass this infection to 
off spring via transovarial transmission [1,46,63]. 
From the midgut epithelium, kinetes (infective 
babesial spores) move through the tick body fl uid 
(haemolymph) to peripheral tissues, including the 
ovaries. After mating, the eggs become infected with 
B. odocoilei kinetes, and are ready to be deposited 
on the forest fl oor. After 5-6 wk, the clutch of eggs 
hatch to I. scapularis larvae, and are ready to transmit 
B. odocoilei to suitable hosts. As well, larvae can 
transmit B. odocoilei infection to hosts by transstadial 
passage [1,46,63]. In fact, a B. odocoilei-infected I. 
scapularis female can transmit B. odocoilei infection 
from one tick generation to the next generation 
without parasitizing infected hosts. In nature, 
this generational sequel completes an enzootic 
transmission cycle of B. odocoilei. Because of their 

minute size (0.75 mm), and capability to transmit 
B. odocoilei, I. scapularis larvae pose a substantial 
threat to the local human population, especially 
after mid-July when a clutch of eggs hatch to larvae. 
Protective acaricide-treated clothing is important, 
especially when the temperatures are above freezing 
and there is no snow cover. Not only are white-tailed 
deer, Odocoileus virginianus, hosts of all three host-
seeking life stages (larvae, nymphs, adults) of I. 
scapularis, these cervids are reservoirs of B. odocoilei 
[46,71]. Based on our fi ndings, songbirds not only 
transport larval and nymphal I. scapularis, they are 
competent hosts of at least three tick-borne zoonotic 
microorganisms.

The blood sample of a Common Yellowthroat 
(COYE*7109) was confi rmed positive for the 
apicomplexan species, Babesia spp. 20-5A74. 
This novel strain was likewise detected in an 
I. scapularis female parasitizing a domestic cat 
residing in the western part of eastern Ontario [15]. 
Ecologically our fi ndings show that passerine birds 
can harbor polymicrobial infections including A. 
phagocytophilum, B. odocoilei, Babesia spp. 20-5A74 
and B. burgdorferi s.l. 

Differences in Babesia species

Babesia odocoilei has special adaptations to live in 
ixodid ticks and certain avian and mammalian hosts, 
including humans. Pathologically, B. odocoilei causes 
human babesiosis [7,8], and ecologically, all four 
life stages of I. scapularis can harbor this zoonotic 
infection [1,63]. In mammalian hosts, sequestering 
Babesia spp., such B. odocoilei maintain infection by 
using cytoadherence (adheres to endothelium cells 
and lining) [72]. Additionally, B. odocoilei exhibits 
sequestration (intravascular Babesia entanglements 
consisting of uninfected- and infected-erythrocytes 
bonded by fi brin strands), and occlude and block 
capillaries and post-capillary venules [73,74]. 
Sequestering Babesia spp. can complete their life 
cycle within self-perpetuating entanglements (local 
proliferation), and cause febrile symptoms. Thus, they 
remain isolated from the circulating immune system 
and spleen [74]. Compared to non-sequestering 
Babesia species (i.e., B. microti), patients that are 
infected with B. odocoilei are typically recalcitrant 
to treat with standard anti-Babesia regimens 
[7,8]. Patients may become life-long carriers and, 
occasionally, death results [31,75]. Sequestration 
has been documented in other Babesia spp. including 
Babesia bovis in cattle [72], Babesia canis in dogs [76], 

Figure 2. Veery, VEER*1207, hatch year, parasitized by three Ixodes 
scapularis larvae. These replete larvae molted to unfed nymphs. 
This bird was infected with A. phagocytophilum and B. burgdorferi 
s.l.; however, the attached larvae were absent of the three pathogens 
tested. Photo: Ana Morales.
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Babesia lengau in domestic cats [77]. In contrast, other 
Babesia spp., which are non-sequestering, include 
B. bigemina, B. divergens, and B. microti [78]. Since 
there at least 111 valid Babesia species, more yet-to-
be-recognized, sequestering Babesia species will be 
fl ourishing in indigenous areas around the globe.

Human babesiosis caused by Babesia odocoilei

Human babesiosis caused by B. odocoilei 
is now being diagnosed and treated clinically 
[7,8]. Presentation in human patients varies 
from asymptomatic to debilitating with variable 
circulatory, gastrointestinal, rheumatological 
and neurological manifestations. Symptoms 
typically include fatigue, exertional intolerance, 
infl ammation, ischemia, impaired cognition, cold 
intolerance, digital numbness, sweats (especially at 
night), insomnia, tissue/organ dysfunction, muscle 
aches (especially legs), and loss of balance [7,8]. Since 
B. odocoilei sequesters in the capillaries of the brain, 
this intraerythrocytic infection can produce cerebral 
pathophysiology, coma-like symptomology, and brain 
fog. Self-perpetuating, fi brin-bonded entanglements 
cause occlusions in capillaries, and hinder blood 
circulation. These entanglements induce capillary 
blockage and, thus, impede the transfer of oxygen 
and nutrients. Consequently, mitochondria are forced 
to produce ATP anaerobically and, therefore, these 
minute organelles operate ineffi  ciently producing 
excess lactic acid. Diminutive ATP exists for normal 
cellular functions, including the Na+/K+ pump [79]. 
Mitochondria dysfunction and occlusion of capillaries 
associated with sequestering Babesia spp. help to 
explain the symptoms of human babesiosis caused 
by B. odocoilei. Humans with a sequestering babesial 
infection can have cognitive and mood disorders 
ranging from minimal to severe [80]. Babesia 
odocoilei infections are typically persistent because 
this piroplasmid sequesters in capillaries and venules. 
Once this infection develops to the advanced stage, 
this deep-seated, stealth infection is recalcitrant to 
treat with current anti-Babesia regimes and, thus, 
this babesial infection is chronic [7,8]. Since there has 
not been a valid commercial test for B. odocoilei aimed 
at human subjects, this particular human babesiosis 
has been a longstanding issue (i.e., cross-reactions) 
that has been misrepresented by invalid serology 
tests and unsubstantiated medical evaluations [1,55]. 
Tick bite is the normal mode of transmission, but 
blood transfusion is also apparent. Case reports of 
congenital babesiosis have been documented [81-83]. 
Infants can acquire babesiosis from tick bites, blood 
transfusions, or congenitally via vertical transmission 
(mother to fi lial off spring). Babesiosis in neonates 

can present with febrile thrombocytopenia, fevers, 
and parasitemia.

Conclusion
We provide the fi rst documentation of songbirds as 

hosts of B. odocoilei, namely Song Sparrows, Common 
Yellowthroats, and Veeries. Since transovarial 
transmission does not apply to B. burgdorferi s.l. and 
A. phagocytophilum, we provide substantive evidence 
that Song Sparrow and Common Yellowthroats 
are competent hosts of these two zoonotic 
pathogens. Because B. odocoilei exhibits transovarial 
transmission, we also show supportive evidence that 
Common Yellowthroats are competent hosts of B. 
odocoilei. Based on our data, B. odocoilei outnumbers 
other Babesia species, and elucidates its predominance 
within the Temperate Zone of North America. In 
addition, we show that songbirds can harbor at least 
three diff erent pathogens concurrently. Molecular 
analysis yielded A. phagocytophilum, B. odocoilei, 
Babesia spp. 20-5A74, and Borrelia burgdorferi s.l. in 
the blood of songbirds captured in southern Canada. 
As avian hosts, passerines play a noteworthy role in 
the enzootic transmission cycle of B. burgdorferi s.l., 
A. phagocytophilum and Babesia spp. Unequivocally, 
B. odocoilei is the predominant Babesia spp. in North 
America. Because songbirds transport pathogen-
laden I. scapularis throughout North America, outdoors 
people do not have to live in or visit an endemic area to 
contract tick-borne, zoonotic pathogens. Healthcare 
practitioners must be cognizant that patients with a 
tick bite may have acquired polymicrobial infections. 
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